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ABSTRACT
The goal of research in the field of cognitive architecture is to
create general intelligent behavior. In contrast, the state-of-
the-art in the field of Human-Robot-Interaction is to hand-
craft systems that are specially tailored to certain scenarios,
thus creating specific rather than general solutions. In this
paper I subscribe to the view that we need to understand
how robots can learn to interact, rather than to try to hard-
code general intelligent social behavior. I further describe
new trends in the field on how to implement a knowledge
representation for a robot and provide further ideas of how
such a knowledge representation could be learned.

1. INTRODUCTION
The goal of research in the field of cognitive architecture
is to create general intelligent behavior (10). To this end,
a cognitive architecture implements a scientific hypothesis
about what aspects of cognition are independent of task (8),
that is to say, it is explored whether a single theory of what
is common among many cognitive behaviors can support
all of cognition (11). This is different from developing sys-
tems that perform particularly well in a specific task, as it
is rather the goal to develop an integrated system that can
cope with many situations.

However, state-of-the-art robotic systems in the field of Hu-
man-Robot-Interaction (HRI), like in many other robotic ap-
plications, make integral use of knowledge that the human
designer has of the robots’ tasks. For example, they rely
on handcrafted symbolic representations, or the detection
of predefined keywords. This hardcoding of knowledge into
the robot’s system on the one hand allows current robots to
tackle complex problems (such as engaging in social interac-
tion with humans) in the first place, but on the other hand
renders the implementation of the robot’s cognitive system
task-specific by definition (which is incompatible with the
goal of cognitive architecture to develop general intelligent
behavior).

In recent years, this approach of manually engineering in-
telligent robots has been criticized to only work sufficiently
well in scenarios where the human designer of the system
can predict all possible situations in advance, and in turn can
prepare the robot by providing it with handcrafted represen-
tations and algorithmic solutions. However, in cases where
the environment is very complex or difficult to model, these
systems tend to break down (1; 19). In response, the re-
search field of developmental robotics has formed. Research
in this field subscribes to the idea, that it should be tried to
completely refrain from engineering the cognitive system of
a robot (i.e. hard-coding knowledge into the system which
thus inevitably results in a task-specific solution), and that
instead the research goal should be to find a way to create
robots that can develop and learn (taking the juvenile stage
of biological organisms as inspiration).

2. COGNITIVE ARCHITECTURE IN DEVEL-
OPMENTAL ROBOTICS

While many promising results have already been achieved
in the field of developmental robotics, the current state of
research on cognitive architecture under this paradigm is
still far from an understanding of how to build robots that
can develop up to a degree where they can learn to socially
interact with humans.

On a methodological level, approaches to cognitive architec-
ture that qualify as “developmental” approaches (i.e. that
support learning and/or refrain from making use of hard-
coded knowledge) have in common that they subscribe either
to the research paradigm of connectionism (i.e. basing the
system on the use of artificial neural networks) or to the re-
search paradigm of dynamicism (i.e. modeling the cognitive
system as a set of coupled dynamical systems). However, in
the details of their implementation, individual cognitive ar-
chitectures that have been proposed so far in the literature
differ substantially from one another (e.g. 3; 6; 9; 13; 17), and
no convergence to a single methodology can yet be observed.
But in most of these works, the approach taken to define the
system on the architectural level is to introduce a new form
of structural element (above the level of complexity of neu-
ral networks or dynamical systems), as “building blocks” in
the cognitive system. The overall behavior of the system
is thus the result of the parallel working of such building
blocks, which are simultaneously active and collaborate in
processing inputs and producing outputs, without requiring
any form of supervisory component or “cognitive module”.
But further than that there is not much agreement about



what should be the exact nature of the building blocks in a
cognitive architecture.

3. REPRESENTATIONS FOR INTERACTION
To allow the robot to participate meaningfully in social in-
teraction, the functionality of the building blocks not only
needs to allow the robot to for example learn about and rec-
ognize elements of the environment, but also to learn about
and to make use of recurring “patterns of interaction” that
are normative in a given culture. Infants master the capa-
bility to interact according to cultural norms and rules early
on in life, through playful interactions with their peers and
caregivers. Interestingly, they do not need to learn a cer-
tain pattern of interaction perfectly before they can utilize
it, but instead they simply try out what they have learned
in an “imperfect” manner, and from these experiences im-
prove their knowledge based on the feedback they receive.
In the developmental psychology literature, the concept of
such patterns of interaction is discussed under the name of
frames: Fogel describes frames as regularly recurring pat-
terns of communication that are each time dynamically re-
constructed by the interactants (4), such as bedtime rou-
tines. Tomasello stresses that frames are defined intention-
ally, meaning that they establish a common ground between
the interactants about what the purpose of the interaction
is and thus facilitate the understanding of what the com-
municative intentions of the interaction partner are (18).
Importantly, a coarse understanding of what constitutes a
certain frame already allows the infant to participate in the
interaction in a meaningful manner, even though he or she
does not yet understand every detail of the interaction or all
the words that the caregiver might use.

Most recently, it has been proposed by Wrede and colleagues
that this capability, to first acquire a coarse understanding
of an interaction and its purpose to allow a robot to par-
ticipate in interactions and to receive feedback to refine its
understanding, should be the basis of social learning capabil-
ities in robots, not only for language but also for the domain
of action (20). From this perspective, to learn to interact so-
cially the cognitive architecture of a robot needs to support a
frame-like representation that allows the robot to recognize
patterns of interaction from the continuous stream of infor-
mation in an ongoing interaction and to participate in the
interaction. Previous attempts to model a frame-like rep-
resentation in a computational system were making use of
handcrafted symbolic representations (12; 16), which how-
ever turned out to be rather unsuccessful due to the very
rigid nature of the resulting system. But the concept of a
frame representation as described above understands it as
very flexible and bendable in nature, which not only allows
the robot to make errors but effectively requires it to do so,
in order to elicit corrective feedback from tutors.

For the goal to develop such frame-like functionality in a
system, the related concept of schema from the field of Psy-
chology (2; 14) provides a suitable theoretical ground for the
modeling of a building block in the cognitive architecture to
house the knowledge of the system (6). Schemata have been
proposed to be the format for the representation of knowl-
edge in the human conceptual system, and are argued to
have a frame-like structure (2). In an early neural-network
model, Rumelhart and colleagues have demonstrated that

frame-like representations can be implicitly stored in a dis-
tributed code in neural network weights (15). In their model,
the system acquires through statistical learning the basis for
frame-like functionality without being given the structure
explicitly: Rumelhart et al.’s model learns a schema repre-
sentation for rooms by being presented a number of descrip-
tions of different rooms (such as, an office has a desk, a chair,
a telephone, etc.). When queried with an incomplete de-
scription of a room (for example, a room with a telephone),
the network’s activation dynamics drives the network into a
state corresponding to a coherent room representation (co-
activating nodes for desk, chair, etc.).

The fundamental logic of this models provides an interesting
perspective on the problem of a developmental robot having
to learn frames and matching them to the current situation.
From the available (incomplete) information, the system dy-
namically infers what other aspects of the environment and
actions are likely to become relevant in the current context.
This would be achieved by driving the system’s state into
an attractor point where additional representations become
co-activated (cf. the concept of embodied simulation (2; 5)),
corresponding to a larger-scale representation of the robot’s
situation. However, Rumelhart et al’s model processes infor-
mation in a very passive manner: Information is presented
to the model, which in turn drives the system into a new
state. In contrast, infants actively query their environment
for information as they engage in playful interaction with
their (social) environment.

This active participation, together with another important
function of a schema representation, might help the infant in
overcoming another difficulty in learning to interact: That
of acquiring knowledge about what elements of the environ-
ment are relevant to a certain situation (which is related
to the frame-problem). This other important function of
the schema representation is that it can be used to make
predictions about the environment, forming the basis for
categorization (2): If an object behaves the way that a cer-
tain schema predicted that it would behave, then the object
is categorized as belonging to the category that the schema
represents (for example, a ball is recognized as a ball because
it behaves in the way that we expect a ball to behave; cf.
also Piaget’s idea of accommodation (14)). In previous work
we have applied this fundamental idea in a computational
model, where we could demonstrate that it allows the sys-
tem to self-organize the learning of several internal models
simultaneously, without requiring any form of supervision of
the learning process or labeling of training data (7). More
specifically, we demonstrated that a robot can learn how the
movement of the own body will effect the visually perceived
position of the own hand, without even knowing in advance
what the own hand is or what it looks like, up to achieving
the same level of performance as when using labeled training
data and supervised learning. This was achieved by letting
the system try to learn multiple internal models at the same
time, and letting these internal models compete against each
other to obtain new training data: An observation is used
for the training of that internal model which best predicted
the observation (i.e. had the lowest prediction error).

The same learning principle could also be applied to the
domain of social interaction, where a robot needs to learn



about what aspects of the environment and what actions are
relevant to a certain situation, in the following way. Imagine
a robot has acquired through exploration a set of actions,
some of which could also involve social interaction with oth-
ers: For example, in a situation where there is a person
present, pointing at an object will result in the person hand-
ing that object to the robot. Once the robot has learned a
set of such actions, it can make predictions about outcomes
to“explore”the social environment: If the robot points at an
object with the prediction that it will be handed the object,
and the interaction partner does indeed hand the object to
the robot, it may be concluded that the interaction partner
saw the action as appropriate for the current interaction.
Using this logic to “activate” relevant actions and other con-
ceptual primitives (e.g. for objects), and combining it with a
learning of co-occurrences and temporal closeness in a way
comparable to how Rumelhart et al.’s model learns about
the co-presence of room features, could lead us to a method
for an autonomous acquisition of a frame representation.

4. SUMMARY
In this paper, I have briefly outlined the approach of de-
velopmental robotics to the topic of cognitive architecture,
where it is commonly tried to model the system on the ba-
sis of some form of “building block”. In subscribing to this
view, I have drawn inspiration from recent work on the in-
tersection of developmental psychology and robotics, where
a bendable frame-like representation was proposed to under-
lie the capability for social interaction, and have outlined a
possible mechanism for the learning of such representations
based on the fundamental capability to make predictions
about the environment and the reactions of others in inter-
actions. Thus, in summary, I have promoted the idea that to
make progress towards truly interactive robots, we need to
understand how a robot can learn to interact, and in what
way it can acquire and flexibly apply knowledge about the
rules of typical interactions.
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