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Abstract— How can high dimensional robots learn general
sets of skills from experience in the real world? Many previous
approaches focus on maximizing a single utility function and
require large datasets of experience to do this, something that
is not possible to collect outside of simulation as every data
point is expensive both in time and in a potential wear down of
the robot. This paper addresses this question using a newly
developed framework called Finite Element Goal Babbling
(FEGB). FEGB is an online learning method that aims at
providing general control over some measurable feature, in
contrast to optimizing it to some given utility function. It
generalizes standard goal babbling by breaking down the full
learning problem into local sub-problems, and combining it
with a planner that learns how to navigate between these sub-
problems. We test FEGB using a real humanoid robot Nao,
and find that it could quickly learn to robustly control its body
orientation. After only 20-30 minutes of training, the robot
could freely move into any body orientation between lying on
either side and on its back. Rapid learning of body orientation
control in high dimensional real robots is largely an unexplored
field of robotics, and although many challenges remain, FEGB
shows a feasible approach to the problem.

I. INTRODUCTION

An open question in the field of robotics is how to
allow robots to efficiently learn new behaviors or skills from
experience given as little prior knowledge as possible. One
way to frame this problem is within task space control. A
task space, or operational space, is often a low dimensional
sensor or representation space, over which getting control
leads to the emergence of behaviors. “Standing up” could
for example be viewed as the specific control where the
1D task space head’s-height-over-ground is changed from a
low to a high value, and “lying down” would emerge as the
opposite transition. Similarly could “reaching” be described
as moving the hand towards an object in the 3D task space
of hand’s-position-relative-to-object.

Separated and distinct from the task space is the motor
space. This is the set of parameters that the robot can
control directly, for example motor torque or joint angles.
The challenge for the robot is to learn how to use the motor
space it is in control over, in order to also get control over
the task space and thus generate associated behavior(s).

In a machine learning setting, one of the most common
ways to achieve such a control is through motor babbling
[1], which consists in randomly exploring the motor space
and observing the effects in the task space. This approach
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Fig. 1. Example of postures learned by FEGB, after 30 minutes of online
learning. A and B represents 2 independent runs, and the number indicate
the state. Each state is responsible of an interval of angle φ, where φ is the
torso’s orientation in relation to the ground, which can be inferred from an
accelerometer inside Nao’s chest that measures the direction of gravity.

has many limitations however. Most striking is the problem
of dimensionality. The motor space is for all but the most
simple robots of very high dimension, while the outcome of a
given motor command might also depend on the initial con-
figuration of the robot. To completely explore the effect of
every possible motor command from every possible starting
configuration is therefore unfeasible for most real platforms.
Furthermore, as illustrated in [2], such an exploration tends
to sample the task space unevenly, leaving many areas of the
space without any samples at all.

Goal babbling [3], [2], [4], [5] offers an alternative ap-
proach in cases where the initial configuration of the robot
can be ignored. Instead of randomly exploring the motor
space, this approach focuses on creating a mapping from
the task space to the motor space directly. This is done by
choosing goals in the task space which it tries to achieve,
while simultaneously building a model for what motor com-
mand to use in order to achieve these goals. Exploring the
task space instead of the motor space effectively reduces the
search space to the dimensionality of the task space. Given
that the task space is low-dimensional, this can lead to vastly
more efficient learning.

The drawback of goal babbling is that it only applies to
settings where outcomes in task space are uniquely defined
by the motor command. Cases where this assumption holds
includes systems that are reset to a given start configuration
after every motor command (in literature referred to as a
home posture [3]), or systems where outcomes of motor



commands are independent on the initial configuration of
the system (as in [2]). This means that goal babbling can
not be used in an environment where the initial configuration
will change between motor commands, and where this new
configuration affects the impact of a given motor command.
Some attempts have been made to extend goal babbling
outside of this limitation, as in [6], but so far has no
framework been able to show control that can only be done
by taking changing initial conditions into consideration.

Finite Element Goal Babbling (FEGB), introduced in [7],
is a Finite Element Method [8] that extends goal babbling by
segmenting the task space into smaller regions where each
region is seen as a separate goal babbling problem. FEGB
autonomously searches for a home posture to each such
region so that some home posture can always be reached.
It can then at a higher level learn what home postures it can
transition between which allows FEGB to learn task space
control even in environments where the starting configuration
matters and changes with every new motor command.

In this paper FEBG is applied to the humanoid robot Nao.
As task space we consider the orientation of the robot’s torso
relative to the ground, which is to be controlled using posture
control, see Fig. 1.

So far, FEGB has only been demonstrated to work suc-
cessfully in a simulation experiment. Transferring results
achieved in simulation to experiments with real robots inter-
acting with the physical world usually represents a challenge
in itself. The contribution of this work is an implementation
of the FEGB framework which addresses several important
difficulties encountered in the real world, such as imperfect
actuator control, irreversible pose transitions, and complex
non-linear dynamics that change over time due to wear down,
changing temperature, battery level and many other factors
that are hard to predict.

The results show that FEGB allows rapid learning in this
domain and the robot is able to move robustly to orientations
between its back and sides after only 20-30 minutes of
interaction with the environment.
Video: http://pontusloviken.com/iros-2018
Code: https://github.com/loviken/fegb/tree/iros-2018

II. RELATED WORK

FEGB is composed of many parts and is therefore related
to several different fields. This section briefly describes
related work, grouped by topic.

A. Motor babbling

Motor babbling has typically been applied for models of
self-perception and body map learning for manipulation. For
example, Stoytchev [9] used a 2-stage process for simulating
the development of self-perception with a 3-DOF robot arm.
In the first stage, called motor babbling, the robot randomly
moved its arm while observing its arm movements via a
remote video camera. For reaching and manipulation tasks,
Rucinski et al. [10] used a motor babbling strategy to allow
a robot to build a spatial (left/center/right) representation of
its upper body, necessary for a model of spatio-numerical

association. Caligiore et al. [11] proposed a motor babbling
strategy to solve a more difficult reaching problem (i.e.,
reaching around obstacles).

B. Goal Babbling

Goal babbling has previously been applied to a multitude
of different domains, such as reaching [3], [12], [4], tool
use [6], [5], and speech production [13], [14]. The motor
spaces used have varied from joint angle configurations (as
in [3], [2]), to motor spaces representing temporally extended
motions such as Dynamic Movement Primitives (as in [6],
[5]) or Central Pattern Generators (as in parts of [4]).

C. Intrinsic Motivation

Many learning scenarios contain a multitude of skills that
could be learned by an agent, but only a limited amount of
time in which to learn it and sample data. One approach to
learn more efficiently in these cases is by rewarding actions
by how much they improve the model of the agent. This is
referred to in the literature as intrinsic motivation. Some of
the most notable implementations of intrinsic motivation can
be found in Intelligent Artificial Curiosity [15], where the
intrinsic motivation is to optimize the learning progress in a
number of different tasks, and in Empowerment [16], where
the goal is to maximize the influence an agent is able to have
over its surrounding. An overview of different approaches
can be found in [17].

D. Hierarchical Reinforcement Learning

To some extent, the method described in this paper is
related to hierarchical reinforcement learning (HRL) [18],
such as the Options framework [19] or Feudal Reinforcement
Learning [20]. The hierarchical structure of FEGB features a
higher level planner that chooses what region to try to reach
next, which in turn employs a lower level goal babbling
framework in order to translate this request into a motor
action. This distinguishes this hierarchy from the others in
that it is a hierarchy in motor space, rather than in time, as
in standard HRL.

III. MATHEMATICAL NOTATION

This work observes a system where an agent attempts to
learn to control a low dimensional task state x ∈ X ⊆ Rm
by changing its joint angle configuration q ∈ Q ⊆ Rn, also
referred to as a posture. It is in general assumed that the robot
has many degrees of freedom, while the task space is low
dimensional so that m� n. The agent can be controlled by
sending a goal posture q̂ to the agent’s controller (seen as a
black box) which will try to change the agent’s posture q into
q̂. This attempt creates a motion until the controller stops in
a new stable configuration (x′, q′), where ideally q′ = q̂. In
the case of goal babbling where the agent always starts from
the same home configuration (x0, q0), or where the effect of
a motor command is independent of the initial configuration,
the resulting task space position x′ can be controlled directly
by finding an inverse mapping g : X → Q that returns a goal
posture q̂ to send to the controller in order to end up in x′

in the task space [3].



IV. FINITE ELEMENT GOAL BABBLING

This section will briefly introduce the most important
concepts behind Finite Element Goal Babbling (FEGB). For
more details, please refer to [7]. The fundamental intuition
behind FEGB is that even though it is not possible to find a
home configuration (x0, q0) to which the agent can always
return (or reach all of the task space from), it might be
possible to find a set of home configurations so that it is
always possible to move to at least one of them, and then
learn how to move between them.

Formally this is done by splitting the task space into a
finite set of convex regions Xs ⊆ X where each region is
seen as the domain for a single goal babbling problem. Each
such problem consists of finding a local inverse mapping
gs : Xs → Q that will work whenever moving between
two configurations (xi, gs(xi)) and (xj , gs(xj)) for xi, xj ∈
Xs. In practice this means that the controller of the robot
is always able to change the posture into gs(xj) when
starting from (xi, gs(xi)), and that this change of posture
will change the position in task space to xj as well. The
goal babbling problem within a region is therefore of the
sort where the starting condition does not matter, as long as
the configuration of the agent can be described as (x, gs(x)),
x ∈ Xs. If that is the case, we will say that the agent is in
a state s, i.e. (x, q) ∈ s ⇔ x ∈ Xs, q = gs(x). Observe
that it will be impossible for an agent to reach any posture
gs(x) exactly in most real world cases, so in practice it will
be necessary to have some measure of “close enough”. Since
a state represents a limited part Xs of task space and is also
tied to the mapping gs in motor space, every state can be
thought of as a home configuration (or a home configuration
space rather).

Using states it is possible to express a probability P (s, ŝ)
to move between two states. It corresponds to the average
probability of starting in a configuration (x, q) ∈ s, sending
a motor signal q̂ = gŝ(x̂) to the controller, and ending up
in a new configuration (x′, q′) ∈ ŝ. Using these transitional
probabilities it is possible for FEGB to plan transitions to
any region Xs∗ of the task space, and once there use the
inverse model gs∗ to reach any desired position within Xs∗ .
Fig. 2 gives an overview over this process.

Given this general description of the FEGB architecture,
practical design choices have to be made in order to imple-
ment it on a (real) system:

1) Segmentation: The task space needs to be partitioned
into convex regions

⋃
Xs = X .

2) Inverse model learning: A method is needed to
estimate a local inverse model gs to every region Xs.

3) State Recovery: If the agent should end up in a
configuration (x, q) that is not in any state s (e.g.
x ∈ Xs but q 6= gs(x)), a strategy is needed to reach
some state properly. This is necessary since the states
acts as home postures and the dynamics of the system
is only known when starting from a state s.

4) Planner: A strategy is needed to choose what state ŝ
to try to reach next.

Fig. 2. This example from [7] shows how the agent is able to reach a goal
on the other side of a wall by splitting the problem in two levels. One that
plans a succession of states s8 → s7 → s11 → s12 to reach the region
of the goal, and then an inverse model in every region that tells the agent
what posture to use to reach the goal precisely.

5) Task goal chooser: Given a goal state ŝ the agent
needs some way to choose what task position x̂ ∈ Xŝ

it should try to reach.
Once these choices are implemented FEGB can be run as
indicated in Alg. 1.

Algorithm 1 Finite Element Goal Babbling (FEGB)
1: for iteration i do
2: Given current state s, choose a goal state ŝ.
3: Choose a task space goal x̂ ∈ Xŝ.
4: Send goal posture q̂ = gŝ(x̂) to the robot’s controller.
5: Let the robot move until the controller con-

verges/stabilizes.
6: Observe the new configuration (x′, q′).
7: If (x′, q′) is not in any state s′, do state recovery

until it is.
8: Use (x′, q′) ∈ s′ to improve gŝ(x), gs′(x) and the

estimate P (s, ŝ).

V. IMPLEMENTATION

A. Hardware

For this study 5 different robots NAO from SoftBank
Robotics were used. Nao has 25 degrees of freedom, is 58
cm tall and weights 4.3 kg. It has an accelerometer within
the torso which will point in the direction of gravity at rest
and can therefore be used to determine orientation φ, see Fig.
1. To protect the robot from damage the hands were covered
with paper and tape, as can be seen in Fig. 1.

B. Adjustments due to hardware constraints

Initially the goal of the experiment was to allow control in
this whole inclination space but problems were encountered
as many parts of this task space could not be explored
safely. Especially orientations on the belly would damage
the gears of the shoulders whenever it tried to move its
arms, as it is too heavy to lift itself, or whenever it fell



over after reaching a goal posture. One way to limit this
damage was to decrease motor stiffness (as defined by the
NAOqi API1), which made joints more compliant, but also
weaker. This led to the problem that the agent was now no
longer strong enough to learn to sit up for example, as that
would require more arm strength to lift itself with. Another
problem of lowered stiffness was that the controller would
now undershoot posture goals. Example: A joint with value
0.0, could stop at 0.4 if asked to move to 0.5. However
if it would be asked to move to 1.0 from 0.0 it would
stop at 0.8. This means that the motor was in fact strong
enough to reach the first goal 0.5 but would not use the
necessary force when it got close enough to the goal. This
is a problem since inverse models g(x) are created on the
assumption that if a configuration (x′, q′) is observed, then
q′ can be used as a goal posture in order to reach x′, for
some starting conditions. However, if the robot undershoots
its goal postures this assumption falls as the robot would not
return to the posture q′ if asked to. As a workaround to this
issue, a ”wrapper” was created around the robot’s controller
that worked like a PI-controller [21] that would create “fake”
posture targets for the robot’s controller that would make it
try to overshoot the true goal posture, leading to an end result
closer to the real goal posture. This wrapper does not alter
FEGB in any way since FEGB just perceives the controller
as a black box, and it is not a problem that it is sending goal
postures to this wrapper instead of to the native controller of
the robot.

In the end a 1D task space was chosen corresponding
to the tilt φ in the span between the agent’s two sides,
see Fig. 1. This span allowed for relatively safe exploration
which was essential in order to safely develop a first FEGB
implementation for the body orientation control problem.

C. Design Choices

1) Segmentation: In this experiment, the overall task
space φ ∈ [−π2 −

π
16 ,

π
2 + π

16 ] is divided into 9 regions
Xs. Their centers are evenly distributed in order to cover
the whole task space, and the width of all regions are made
equal. The robot was thus limited to angles between its back
and its sides.

2) Inverse model learning: The inverse model gs(x) is
here approximated using Linear Regression (LR) [22], using
a dataset Ds = {(xi, qi)}Ns

i=1 of observations previously
seen in the state. If a state has no previous observations,
extrapolation can be made using the dataset of the agent’s
current state.

Creating a dataset Ds leads to a first problem of how to
decide whether a seen configuration (x, q) should belong to
the dataset or not. If no previous sample has been seen in
a region it can be accepted immediately. On the contrary,
if some samples have already been collected in the state, a
heuristic is needed to decide if the new sample should be
accepted or not. As in [7], this choice is made on the basis

1http://doc.aldebaran.com/2-5/naoqi/motion/
control-stiffness.html

Fig. 3. An illustration of consistency. Here, X(3) is a region in the task
space, and Q(3) illustrates regions in the posture space from which X(3)
can be reached. q1 and q2 are here consistent with each other since it is
possible to move to interpolations between them without leaving X(3). On
the contrary, the pair q1 and q3 is inconsistent, since some interpolations
leads to sensor states outside of X(3).

of Consistency. Consistency here refers to the ability to move
to any interpolation of two postures q1, q2 without leaving
a region Xs (see Fig. 3). An example of two non-consistent
postures is sitting and standing. Both can allow the torso to
point upwards, while a posture in-between most probably can
not. The choice of a consistency heuristic is useful for two
reasons. First, it is compatible with the choice of using LR,
since averages over consistent postures will also be in the
region Xs. Second, it confines the function gs to a smaller
part of the motor space, which allows the state to work as
a home configuration where the agent is in a specific region
of both task and motor space, see Sec. IV.

It is in practice impossible to test consistency between
all seen configurations in a region. Instead, consistency is
approximated using the following test: A data point (x, q)
is assumed to be consistent with a state s if x ∈ Xs and
max{|q − LR(x|Ds)|} < ε, where LR(x|Ds) is the linear
regression estimate q̂ for task space position x given dataset
Ds, and ε is an empirically set deviation margin. This allows
new samples to be added even if they differ slightly from
the previous model, which allows the inverse model to adapt
over time towards postures that are easier to reach, as such
postures would be reached more often and thus constitute a
greater proportion of the dataset. This exploration of the mo-
tor space is also important to consider when approximating
the goal postures the agent will attempt to reach. Here, this
is accomplished by adding a Gaussian noise to the original
estimate given by LR. The exact implementation of this noise
is not essential to the aim of this paper and was empirically
crafted for this problem. The final expression for the inverse
model is:

gs(x) ≈ LR(x|Ds) +

(
1

ds(x)
+ η

)
rN (0, I) (1)

where N (0, I) is a normally distributed noise-vector for
exploration, r ∼ U(0, 1) is a random scalar to modulate the
over all noise rate, and

(
1

ds(x)
+ η
)

decreases exploration
with the density ds(x) of samples around x, to allow greater
exploration in the parts of task space where less samples
have been observed, and η is a “background-noise” constant
so that the noise level never goes completely to zero. The
motivation for this background noise is that regions otherwise



risk becoming unvisitable as the robot’s dynamics changed
over time due to for example motor temperatures, battery
levels, or wear down. In some rare cases this was however
not sufficient and postures that had previously been reached
became unreachable. As mappings in different states are
learned independently, it is possible for a local dataset to
become obsolete regarding its compatibility with neighboring
states. To allow the convergence of the different datasets,
we allow one to be discarded if the estimated probability to
reach it falls under a threshold of 0.2. To discard a dataset
ensures that a new compatible one can be found, although
it is arguably sub-optimal since valuable samples might be
lost. Further work therefore needs to be done to find a more
optimal solution to the problem.

3) State Recovery: If an agent is in a configuration (x′, q′)
that is not in any state s (for example by not getting close
enough to its goal posture q̂ = gs(x̂), or by ending up in the
wrong part of task space), state recovery will be attempted
by trying to reach states randomly. First it will try to reach
among the nearest states but if it fails, it will search the
whole state space for recovery. Empirically this proved to be
sufficient.

4) Planner: The agent is allowed to attempt transitions
from its current state to its closest neighbors or itself. As
the outermost states only have one neighbor, this leads to
a total of 25 unique transitions that the agent can attempt,
also referred to as State-Actions, where “Action” refers to
the action of choosing where to try to go next. As in
[7], this is seen as a Markov Decision Process (MDP)
[23]. This MDP has a state-space S = {si}9i=1, and the
action space Asi = {si−1, si, si+1}, where si−1 and si+1

are states left and right of si. To learn how to efficiently
move around in this MDP it is necessary to approximate
transitional probabilities P (s, ŝ). Observe that the underlying
“true” probability to do this transition is non-stationary as the
inverse models that are used to reach a state are also trained
and will improve over time. How much an inverse model is
improved also depends on how many times the planner has
tried to reach it. This means that the planner is indirectly able
to increase the probability to reach a state by attempting to
go there many times. The exploration of the MDP therefore
has two goals: To approximate transitional probabilities, and
to identify where the inverse models can improve the most.
To this end, an intrinsic reward R(s, ŝ) is used, that gives a
reward every time the agent tries to move from s to ŝ and
succeeds. This reward function R(s, ŝ) is initiated to 1.0, and
is then decayed by a factor β ∈ [0, 1] every time the transition
is successfully performed, so that R(s, ŝ)← βR(s, ŝ). At the
same time is P (s, ŝ) initiated to 1.0 and updated according
to the rule P (s, ŝ)← αP (s, ŝ) + (1− α)I(s, ŝ), after every
attempted transition s→ ŝ, where α ∈ [0, 1] and I(s, ŝ) is 1
if ŝ is reached, and 0 otherwise. The overall effect of this is
that a transition becomes uninteresting if it constantly fails
or succeeds: If it fails because the estimated probability to
receive the reward goes to zero, and if it always succeeds
because the received reward goes to zero. This allows the
agent to focus on the transitions where it is making the most

progress and avoid transitions that are either too easy or too
unlikely to succeed. Given P (s, ŝ) and R(s, ŝ) it is possible
to approximate an action value function

Q(s, ŝ) = P (s, ŝ)[R(s, ŝ) + γV (ŝ)] (2)

with V (ŝ) = max
ŝ′
{Q(ŝ, ŝ′)} and discounted future reward

γ ∈ [0, 1]. The planner would then choose goal states:

ŝ← argmax
s′
{Q(s, s′)} (3)

The inclusion of expected future rewards forces the agent out
from the parts of task space it already masters to the parts
where it can improve the most. A more detailed description
of this intrinsic reward can be found in [7].

If a user would later want the robot to move to a given
state s∗, this can be accomplished by changing the reward
function so that only transitions to s∗ are rewarded. This
makes the agent plan the sequence of transitions most likely
to end up in s∗ (although this problem is trivial in 1D).

5) Task goal chooser: Given a goal state ŝ, a task position
goal x̂ is chosen by uniformly randomly sampling a position
x̂ ∈ Xŝ. The only exception is if a user has given a goal x∗,
and x∗ ∈ Xŝ. Then x̂← x∗.

D. Hyperparameters
The hyperparameters in this experiment are determined

empirically and set to:

Parameter Value
Number of states 9
Neighborhood radius 1
Reach time 2 sec
ε - Deviation margin for Ds

π
2

η - Background-noise to gs(x) 0.05
α - Update rate for P (s, ŝ) 0.9
β - Decay rate for R(s, ŝ) 0.7
γ - Future reward discount for planner 0.95

“Neighborhood radius” refers to what neighboring states the
planner can try to reach, with a value of 1 being equal to
only the immediately adjacent states.

VI. EVALUATION

FEGB is evaluated in two ways. As it tackles a problem
with no previous examples from literature a first thing
to evaluate is how well it solves this problem. Secondly,
although not covered in literature, it is relevant to compare
it to other possible approaches.

A. Learning capability evaluation
To estimate how well FEGB learned this particular prob-

lem a natural measure is the success rate of different state-
actions (SA), e.g P (s, ŝ). The planner already approximates
these probabilities but, for exploratory purposes, initializes
all probabilities to 1. This is too optimistic for the purpose of
evaluating or visualizing the true capabilities of the agent and
for that reason an additional set of probabilities P ′(s, ŝ) is
kept. These estimates are computed the same way as P (s, ŝ),
but are pessimistically initialized to 0 and with an update rate
α = 0.8. These values are what will be used in all results.



B. Baseline comparison

Although there are no real baselines to compare the
method to, it can still be possible to evaluate different parts
of the solution to other approaches. In particular:

1) Does FEGB provide an efficient exploration of the task
space?

2) Is consistency necessary for developing robust inverse
models?

Motor babbling (MB) is a baseline for the first considera-
tion, which is here interpreted as sampling goal postures q̂
uniformly in the motor space of the agent. How well this
strategy explores the task space can then be compared to
the implementation of FEGB by observing the frequency
with which different regions Xs would be visited with the
respective strategies.

The second question is less straightforward to evaluate.
There are many different ways inverse postures can be
approximated given a number of observations {(xi, qi)}i in
a given region Xs, and the importance of consistency might
depend on this choice. To evaluate every possible choice of
inverse model is however outside the scope of this paper, so
what is evaluated is the importance of consistency for this
particular set up. This is done by accepting every sample seen
in a region Xs to the dataset Ds during the MB exploration.
This means that the samples of Ds will be relatively evenly
distributed over the motor space.

To compare the inverse models developed by the FEGB
implementation to the ones by the MB approach the agent
is asked to do a “random walk” through the state space by
choosing neighboring states as goal states at random. Perfect
inverse models would mean that the agent would spend equal
amount of time in all states on average, while unreachable
inverse models confines the agent to the subset of the state
space it can reach. Note that it is not possible to compare
success rates P (s, ŝ) here since the MB approach does not
use goal states ŝ during exploration.

C. Data collection

Training is done so that the robot always starts on its
back in a relaxed posture, as in A4 or B4 in Fig. 1. If the
robot falls over to its belly it is manually lifted back to its
back in order to protect the shoulders. Learning capability
evaluation is done in 10 independent runs with 5 different
robots. Each robot is trained for 1000 iterations with 10
minutes rest every 200 iterations to allow the motors to cool
down. Every iteration is done as described in Alg. 1. The
baseline comparison, is done in 3 independent runs with
separate robots. Every robot is here given 600 iterations with
rest every 200 iterations as before. The decreased number of
iterations is because MB exploration results in wild motions
that are damaging to the robots. The random walk evaluation
is done for 100 iterations where the agent is not allowed to
improve its models with new observations.

VII. RESULTS

Fig. 1 exemplifies two sets of postures that were found
by FEGB after 1000 iterations, corresponding to around 30

Fig. 4. Probabilities of successful state-actions (SAs), where each SA
corresponds to an attempted transition between two unique states. To the
left: The mean probability of a state-action to be successfully performed,
where the background indicates the distribution over all SAs where brighter
colors represents higher density. To the right: The mean success probabilities
of every SA over 10 different runs. The SAs are here sorted by size (after
averaging).

minutes of training time. A video of a robot trained for 500
iterations and then requested to roll from side to side can be
found at: http://pontusloviken.com/iros-2018

As for the quantitative evaluation, Fig. 4 shows how the
success rate of SAs changes over time in FEGB. It shows
that this implementation of FEGB was able to learn all SAs
to this problem with a mean success-rate above 80%, with
half of the SAs over 90%, after 1000 iterations.

Fig. 5 shows how often the agent would visit different
regions when goal postures q̂ were given using FEGB vs
sampled uniformly from the motor space, as in the MB
approach. It shows that FEGB is spending most of its time
close to the middle state (on its back) to begin with, but then
shifts its focus to states further and further out as it gets more
proficient at moving away from the middle. This is not the
case for MB where the observations are concentrated around
the middlemost states, as most goal postures will move it
back there. This distribution does not change over time which
is expected since postures are chosen randomly.

Fig. 6 shows the distribution of time spent in different
states if 100 goal states are chosen randomly (as described
in Sec. VI-B). A robot that is likely to succeed with all
transitions is expected to spend an equal amount of time in
all states. The results shows that FEGB gets a more uniform
distribution the more it is trained, meaning that it becomes
more proficient at reaching each region, while the MB
approach on the other hand shows a decreasing performance
over time as many states that could previously be reached
become unreachable. The most probable explanation for
this is that MB formed non-consistent datasets when more
samples were collected.

In total 5 robots were sent for repair throughout the whole
process of setting this experiment up and collecting the data,
but this also included trials where we wanted to see if the
agent could move to positions on its belly, sitting up or while
evaluating different motor stiffnesses. For this reason it is
difficult to say what the wear down would typically be in the
final setup. It was however clear that exploring using FEGB
was much less destructive to the robots than choosing goal
postures randomly as in MB. The goal postures produced by



Fig. 5. Proportion of time spent in different states during training. MB is
just sampling postures uniformly which explains why the distribution does
not change, while the intrinsic motivation of FEGB drives it to search out
the states less frequently visited, even if they might be harder to reach.
FEGB is based on 10 independent runs, and MB is based on 3 independent
runs.

Fig. 6. Proportion of time spent in different states after 100 steps, when
asked to do a random walk in the MDP and starting in state 4. The robot is
not allowed to use any new observations in this test. Perfect control would
approach a uniform distribution. Both charts are based on 3 independent
runs.

FEGB were generally close to the robot’s starting posture,
and were also generally easier for the robot to reach as it
was based on previously observed postures.

VIII. DISCUSSION

This study shows a first implementation of the FEGB
framework/architecture on a real high dimensional humanoid
robot that rapidly learns to control its body orientation.
This is a problem domain largely unexplored with no clear
baseline approaches readily applicable, although it represents
an important step in the sensorimotor development of infants
[24]. The study shows promising results and confirms that
the method is indeed well suited for the problem domain,
but is so far held back by constraints such as stress on
gears. It is yet not known how to get around this while
still allowing high enough motor torque for the robot to
effectively reach all of its inclination space. This will be
particularly important if the method should be applied to
robots heavier and stronger than Nao. If this problem is
solved it is very likely that FEGB can also be used to learn
to move between back and belly, and also to more upright
postures, such as sitting up. These behaviors were seen to
varying degree when setting these experiments up, but could
not be systematically investigated as they could not be done
safely.

Because of the focus in developing a method that allows
the learning of body orientation control to begin with, rather
than how to best do it, this study leaves many questions
unanswered. This was to a great extent a necessary choice
due to the expensive nature of the experiments, both mon-
etarily due to wear down, and in time due to the time
it takes to run experiments on physical robots. A more
detailed analysis of the impact of different design choices
is an important next step for future work as it would help
assessing both what choices are optimal for different cases,
and also what the simplest possible design choices would
be for the method to work. Is it for example necessary to
explore the state space using an intrinsic motivation or would
random goal states work as well? Would other inverse models
allow more data points to be safely added to the datasets?
One way to investigate these choices more thoroughly is in
simulation. This is however also at the risk of losing a lot
of the effects that are essential for physical implementations,
such as the problem of robot damage or changing dynamics
due to factors such as wear down, changing energy levels,
temperature, etc.

Another natural question from these studies is to what
other problem domains it can be applied. Could the task
space be extended with additional dimensions for example?
Could a similar framework be used to allow a robot to
learn how to stand up? There are no clear answers to these
questions at the moment, but something to consider is that
the learning time of the system is connected to the size of the
task space, which means that adding many extra dimensions
would soon lead to unfeasible training times for physical
robots, assuming that the agent tries to learn to reach any
position in this space. A more feasible approach would be
to look at multiple task spaces in parallel, as has been done
for goal babbling in for example [5] and [6]. As discussed
in the introduction, many important skills can be expressed
as control over low dimensional task spaces.
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